

MATERIAL MEETS ENGINEERING

Iyondellbasell Advancing Possible

Westhafen Pier 1 in Frankfurt a. M., Germany

Design and Measurement of Covers for Automotive Radar Sensors (Radomes)

Dr. Florian Pfeiffer (CEO)

Source: FGAN Wachtberg, Germany

Dornacher Straße 3d | 85622 Feldkirchen b. München | Germany Phone: +49 89 959 277 500 | Fax: +49 89 959 277 529 www.perisens.de

About perisens...

- Your reliable partner in automotive radar integration for more than 10 years!
- Located in Feldkirchen near Munich, Germany
- Founded as Spin-Off from the Technical University München (TUM) with ongoing cooperation

Services

- Technical Consulting / Studies
- RF Measurements & Simulations (up to 90GHz)
- Radar Signal Processing
- Development of RF Prototypes
- Radar Workshops
- Solutions in automotive Radar Sensors

Products

- In-House Development, Production and Sale of Radar Target Simulators (RTS) and Radome Measurement Systems (RMS)
- >50 Customer Installations Worldwide

Today's Advanced Driver-Assistance Systems (ADAS)

Today's Advanced Driver-Assistance Systems (ADAS)

Today's Radar Sensor Set

Different sensor depending on Field of View

- SRR (Short Range Radar) with distance up to 120m
- LRR (Long Range Radar) with distance up to 300m

RADAR (RAdio Detection And Ranging) Principle

- **Emission** of an electromagnetic (EM) wave at 77 GHz
- **Reflection** of EM wave at a target object
- **Reception** of reflected EM wave as "echo" and measurement of object information
 - Distance
 - Angle/direction to target (horizontal and vertical)
 - Relative velocity
 - > "Size"

Why using radar in the vehicle?

- Simultaneous measurement of
 - Target distance
 - Target angle
 - Relative velocity (Radar is the only sensor technology with direct velocity measurement)
- Low cost (below 30Euro/sensor)
- High availability in all weather situations
- Concealed integration possible "without" design interference
- Usable in full speed range (0 to 200km/h)
- Multi-target situations (target separation!)

Integration of radar sensors in the vehicle

SRR (corner radar)

Behind bumper

LRR (front radar)

Open

Behind emblem

Inside grill

Integration of Automotive Radar Sensors

- Effects from integration due to
 - material change from air to radome material and back to air
 - Geometry of radome
- Impact on the radar performance
 - Decrease of range
 - Errors in Angle Measurement (more critical for higher range!)

Wave Propagation through Single Dielectric Layers

Transmission [%] + Reflection [%] + Absorption [%] = 100% (energy conservation)

Wave Propagation through Single Dielectric Layers

Material Characterization at Millimeter Wave

Traditional Way

Focus Beam Measurement System, perisens (60 to 90GHz)

- Complex radio frequency (RF) equipment
- Complex measurement procedure
- Requires RF engineer

New Way

RMS-D 77/79G, perisens (76 to 81GHz)

- Single device ready to use
- Measurement at a push of button
- Requires any instructed person

RMS Measurement Principle

• Amplitude difference to air (attenuation): $\Delta A = dB(a_s/a_{air})$

Procedure of Single Layered Material Characterization

(1) Thickness measurement

Micrometer screw for total thickness

(2) RMS measurement

- Thickness is entered in layer stack tool Thickness: 2.381 mm
- Reference measurement is performed without sample
- Sample is placed on RMS measurement table
- Complex Permittivity of coating is measured with a push of button

	Measurement Results			
	Transmission (1way) in dB:	-0.84	Phase (one-way) in deg:	-173.1
	Relative Permittivity:	2.52	Loss Tangent (tand):	0.002
	Transmission (1way) calc in dB:	-0.84		
1	Reflection (bottom) calc in dB:	- 8 .02	Reflection (top) calc in dB:	-8.02

Material Properties of Plastic

Real part of relative permittivity is between **2.2 and 3.2** (Conducting pigments and glass fiber/talcum increase the value)

Material	Relative Permittivity	Loss factor (tanD)	Optimum thickness (*) [mm]	2-way Absorption [dB]
PP	2.3	0.003	2.61	0
PC	2.77	0.006	2.35	0.3
PC/PET	2.8	<0.01	2.34	1.1
ASA	2.9	0.014	2.30	1.5
PP/EPDM	2.24	~0	2.62	0
PP/EPDM TD30	2.68	~0	2.39	0

Measured with RMS-D, perisens at 76.5GHz (*) 2nd transmission maxima

Note:

The thickness of the cover must be matched to the material (and wavelength and tilt angle)!

Material Characterization (multi-layer sample)

Travertin beige △

exemplary classification

120

110

Effect of Metallic Paint

- Metal pigments (= good conductor with free electrons) are separated by isolator in metallic paint
- In present of an electro-magnetic wave the electrons are oscillating inside the metal (surface polarization) which strongly increases the electric density (permittivity)

Wave Propagation through Multiple Dielectric Layers

Simulation of Reflection/Transmission vs Substrate Thickness 76.5GHz at vertical incidence

Substrate thickness has to be matched to paint with highest permittivity!

Procedure of Coating Characterization

(1) Thickness measurement of each individual layer

- Micrometer screw for total thickness
- Microscopic analysis or co-painting of metal plates and inductive measurement for coatings

(2) RMS Measurement

Thickness and complex permittivity of all layers except of unknown coating is entered in layer stack tool

Layer 1 Thickness: 36 µm ~	εr: 3.50 tan(δ): 0.000 Select as Unknown	Choose Material X
Layer 2 Thickness: 13 µm ~	εr: tan(δ): ☑ Select as Unknown	Choose Material 🗙
Layer 3 Thickness: 2.381 mm ~	εr: 2.844 tan(δ): 0.008 □ Select as Unknown	Choose Material

- Reference measurement is performed without sample
- > Sample is placed on RMS measurement table

Complex Permittivity of coating is measured with a push of button

Transmission (1way) in dB:	-1.16	Phase (one-way) in deg:	-171.2
Relative Permittivity:	31.64	Loss Tangent (tand):	0.031
Transmission (1way) calc in dB: Reflection (bottom) calc in dB:	-1.16 -7.82	Reflection (top) calc in dB:	-7.66

Material Characterization Multi Layer Samples (coatings)

Paint	RMS Relative Permittivity	1W Transmission [dB]	Layer Thickness [µm]
Brilliant black (uni)	3.05	-0.37	12.5
Ibis white (uni)	5.62	-0.69	43.5
Deep green (pearl)	2.76	-0.36	17.0
Daytona gray (metallic)	13.70	-0.69	16.0
Akoya silver (metallic)	20.80	-0.93	14.5
Ice silver (metallic)	53.87	-2.96	18.5

Measured with RMS-D, perisens at 76.5GHz

Angle Error Estimation from Transmission Phase

- Automotive radar sensors use phase information to derive angle of arrival (AoA)
- The phase difference Δφ between several antennas is measured and used to calculate the angle α of the wave reflected from the target

$$\alpha = asind\left(\frac{\Delta\varphi}{\Delta d}\frac{\lambda_0}{2\pi}\right)$$

- $\Delta \varphi$...phase difference
- d...distance between antennas
- λ_0 ...wavelength (e.g. 3.9mm @76.5GHz)

Angle Error Estimation from Transmission Phase

For small incident angles α (<30°) in °

$$\alpha \approx \frac{\Delta \varphi}{\Delta d} \frac{\lambda_0}{2\pi}$$

At 76.5GHz the angle error can be approximated by

 $\alpha \approx \Delta \varphi [^{\circ}/_{\rm mm}] \cdot 0.62 \rm mm$

Rule of thumb: A phase error of 10° per 10mm results in an angular error of 0.62°

RMS Scanning Measurement

 xy positioning system for grid measurements allows homogeneity measurements as option available

RMS Scanning Measurement

.2

-40

-20

20

0

X-Axis in mm

40

Radome: From Development to Production

End-of-Line Measurement of Radar Sensors

Radar sensor based Installation (77GHz)

Sensor based measurement

RMS-D 77/79G, perisens (76 to 81GHz)

Radar independent Measurement

Red line shows movement trajectory (measurement during movement) e.g. a region of 80x112mm² with 72 points (=8x9)

 \rightarrow cycle time ~5s (= 60ms x 72pts | requires movement of 200mm/s)

Example Setup 1: RMS-C Handled by Robot with Fixed Part

- Full measurement flexibility with 3D movement of RMS
- Allows scanning of curved parts
- Integration into the production process using standard robots in fully or partly automated solutions
- Especially suitable for large parts (e.g. bumper, black panel)

Exemplary production cell (manually loaded) by mühlbauer TECHNOLOGIE GmbH

Example Setup 2: RMS-C Fixed with Part Handled

- Integration example with 3D handling of the part using a robot and fixed RMS-C
- Compact unit with a small footprint
- Integration into the production process in fully or partly automated solutions
- Especially suitable for small parts (e.g. emblems, radar covers)

Exemplary setup by perisens GmbH

photography, Nikon 380 – 780nm wavelength

1:18 model

imaging radar, perisens 3.9 – 4.0mm wavelength

We are looking forward to a good cooperation on the same wavelength!

perisens GmbH | Dornacher Straße 3d | 85622 Feldkirchen b. München | Germany Phone: +49 89 959 277 500 | Fax: +49 89 959 277 529 www.perisens.de